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Abstract. We studied cluster structures and cluster aggregations in a two-dimensional
ferromagnetic colloidal system numerically. We developed a Brownian dynamics calculation
method in which both the translational and rotational motions of ferromagnetic particles were
taken into account. The dependence of the cluster structures on the nondimensional parametersλ

andξ was investigated, whereλ is the ratio of the magnetic dipole energy of a particle to thermal
energy andξ is the ratio of the interactive energy between the dipole moment and the external
magnetic field to thermal energy. The fractal dimension was 1.3 in the absence of a magnetic field
irrespective ofλ. On the other hand, the fractal dimension was very close to 1.0 when the system
was subjected to a strong magnetic field. Cluster–cluster aggregations were also investigated and
the validity of the dynamic scaling law was examined. The exponent in the dynamic scaling law
was obtained as a function ofλ. It has been found that the exponent increases withλ and becomes
constant whenλ > 12 but that the fractal dimension does not change withλ. The values of the
fractal dimensions and the exponents obtained by the present simulation are compared with those
obtained by other experiments and model simulations.

1. Introduction

It is known that ferromagnetic particles dispersed in a solvent fluid form clusters under certain
conditions. The main parameters which govern the cluster formations and structures are the
concentration of the particles, the temperature of the system, the magnetic dipole moment
of a particle, the diameter of a particle and the strength of an external magnetic field. It is
very important from a theoretical point of view to make clear the mechanism of the cluster
formations and the mode of the cluster–cluster aggregations (CCAs) because it is believed that
there may be universal laws in the mechanism and the mode [1]. It is also necessary to make
clear the mechanism and the mode from a practical point of view as the structures of clusters
determine the rheological or optical characteristics of ferromagnetic colloids [2–5]. Cluster
formations in magnetic colloidal systems have been investigated experimentally, theoretically
and numerically based on statistical mechanics, the Brownian dynamics method and the
Stokesian dynamics method by several researchers. Helgesenet al [6], Promislowet al [7],
Fermiger and Gast [8], Jansenet al [9], Kim and Brock [10], Liuet al [11] and Hagenb̈uchle
and Liu [12] carried out experimental investigations of cluster structures of ferromagnetic or
paramagnetic colloidal systems. Gennes and Pincus [13], Sano and Doi [14], Jordan [15] and
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Hayter and Pynn [16] analysed cluster structures by statistical mechanics. Satohet al [17] and
Ikuhara and Cawley [18] analysed cluster structures of ferromagnetic colloids by the Monte
Carlo method. Mohebiet al [19] studied the cluster structure formation in magnetorheological
fluids by the Stokesian dynamics method. Models of irreversible growth of linear chains by
CCAs have been developed by Miyazimaet al [20], Eriksson and Jonson [21] and Mors
et al [22]. However, the cluster growth process and the dependence of the cluster structures
on parameterλ are still open questions. The following points are still unknown and therefore
must be investigated: (1) Does the fractal dimension of ferromagnetic clusters change with
λ? (2) Does the dynamic scaling law, that isns(t) ∼ t−ws−τ f (s/tz) wherens , t , s andf
are, respectively, the number of clusters which are composed ofs particles, time, the number
of particles in a cluster and a scaling function, apply to the cluster growth of ferromagnetic
particles? If the dynamic scaling law applies, the exponentz determines the cluster growth
rate as shown in section 3.2 and therefore the dependence ofz onλ must be made clear.

The purpose of this paper is to analyse the cluster formations and structures in a
ferromagnetic colloidal system by the Brownian dynamics method and to make clear the
effect of parametersλ andξ on the fractal dimensions of the clusters and the exponentz in
the dynamic scaling law. In the second section, we develop a Brownian dynamics method
in which both translational and rotational motions of ferromagnetic particles are taken into
account. The potential energy between two particles is described and the numerical technique
and procedure are explained. In the third section, the cluster formations are analysed. The
effect of parametersλ andξ on the fractal dimensions of the clusters are investigated. CCAs
are also analysed. The validity of the dynamic scaling law is investigated and discussed. In
the final section, the result of the analysis is summarized.

2. Analysis

In this section, a model of a ferromagnetic colloidal system is introduced and the numerical
procedure is described.

2.1. Modelling

As we focus on the motions of colloidal particles, we make a model of a ferromagnetic
colloidal system based on the Langevin equation. In this case, the effect of the collisions of
solvent molecules with ferromagnetic particles are represented by a white noise. The Langevin
equations for both translational and rotational motions are expressed as follows:

∂u

∂t
= − ζt

m
u +

F

m
+P (1)

∂ω

∂t
= −ζr

I
ω +

T

I
+ τ (2)

whereu andω are, respectively, the velocity and angular velocity of a particle;m is the mass
andI is the moment of inertia.F andT are, respectively, the force and torque acting on a
particle through the interaction with the other particles and an external magnetic field;ζt and
ζr are the friction coefficients. We assume that Stokes law applies to the coefficients.P and
τ are the random force and torque caused by collisions with solvent molecules. The mean
values and autocorrelations of the random force and torque satisfy the following relations:

〈P (t)〉 = 〈τ (t)〉 = 0 (3)

〈P (t) · P (t +1t)〉 = 6ζtkT

m2
δ(1t) (4)
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Figure 1. Ferromagnetic particles. Each particle is composed of a single magnetic domain and the
surface is coated with a surfactant material.

〈τ (t) · τ (t +1t)〉 = 6ζrkT

I 2
δ(1t) (5)

where〈· · ·〉 represents the time average.k andT are the Boltzmann constant and temperature
andδ is the Dirac delta function.

2.2. Potential energy

As is shown in figure 1, we assume that ferromagnetic particles are spherical and the surface is
coated with a surfactant material. Each particle is composed of a single magnetic domain and
therefore the magnetic interaction between particles is expressed by a dipole potentialum [13].
Furthermore, we take into account potentials based on the van der Waals attractionuv and the
repulsion caused by surfactant–surfactant contactus [23].

um = −mi ·Hij = 1

4πµ0

{
mi ·mj

r3
ij

− 3

r5
ij

(mi · rij )(mj · rij )
}

(6)

uv = −A
6

{
2R2

r2
ij − 4R2

+
2R2

r2
ij

+ ln

(
r2
ij − 4R2

r2
ij

)}
(7)

us = 2πR2NkT

{
2− rij − 2R

δ
− rij

δ
ln

(
2R + 2δ

rij

)}
(8)

whereµ0, mi , R, δ, A andN are, respectively, the permeability, the magnetic moment of
particlei, the radius of the particle, the thickness of the surfactant layer, the Hamaker constant
and the surface density of the surfactant molecules.Hij is the magnetic field at the position
of particlei produced by particlej . The interactive energy between a particle and an external
magnetic field is expressed as

uH = −mi ·H (9)

whereH is the external magnetic field.
F andT in equations (1) and (2) are obtained as follows:

F = −
n∑

j=1(j 6=i)

∂

∂rij
(um + uv + us) (10)

T =mi ×
( n∑
j=1(j 6=i)

Hij +H

)
(11)

wheren is the total number of particles. Although we included the van der Waals attraction, the
system is a so-called soft-sphere dipolar fluid: that is, the dipole interactions and short-range
repulsion are dominant compared with the van der Waals attraction.
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Table 1. Calculation conditions.

Diameter of ferromagnetic core 10 nm
Thickness of surfactant 2 nm
Mass of particle 2.9× 10−21 kg
Surface density of surfactant molecules 1018 molecules m−2

Dynamic viscosity of solvent 10−3 Pa s
Hamaker constant 10−19 J
Temperature of solvent 300 K
Number density of particles 121 particles (0.352µm)2

2.3. Numerical technique and procedure

The calculation conditions and physical properties are summarized in table 1. We carried out
calculations assuming that the diameter of the particles was 10 nm and the thickness of the
surfactant layer was 2 nm. Nondimensional parametersλ andξ are defined as

λ ≡ |m|2
4πµ0d3kT

(12)

ξ ≡ |m|H
kT

(13)

whered is the diameter of a particle,λ is the ratio of the magnetic dipole moment energy to
thermal energy andξ is the ratio of the interactive energy between the dipole moment and the
external magnetic field to thermal energy.

121 particles were placed in a 0.352µm× 0.352µm cell. Periodic boundary conditions
were employed to overcome the surface problem. The cut-off distance of the interactive
potentials was 80 nm, that is eight times longer than the particle diameter. A uniform magnetic
field was applied to the square cell and the effect of the magnetic field on the cluster structures
was analysed. Because of the random force and torque (see equations (1)–(5)), the system
becomes canonical. The Langevin equations (1) and (2) were integrated based on Ermak’s
procedure [24]. The integration procedure is summarized in the appendix. The time step of
the calculation was 10 ps.

3. Result and discussion

The calculation was successfully carried out without any numerical instabilities. In this section,
the result of the numerical calculation is analysed and the structures of clusters and the CCA
modes are investigated.

3.1. Steady-state cluster structures

We calculated the pair-correlation functions of particles for differentλ and defined the cluster
formations as follows: if the distance between two particles is shorter than 1.2d, whered
is the diameter of a particle, those two particles form a cluster. This definition is correct
for the following reason: there was little effect ofλ and ξ on the first and second peak
positions in the pair-correlation functions; the first peak position= 0.98d and the second
peak position= 1.96d. The standard deviation was less than 0.04d in both cases. The
position corresponding to the minimum point between the first and second peak positions was
1.55d ± 0.12d. Therefore, the distance,rc, which defines the cluster formation, has to be
0.98d < rc < 1.55d. We carried out simulations changing the distancerc = 1.1d, 1.2d,
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Figure 2. Dependence of the ratio of the number of particles in the largest cluster to the total
number of particles in the system on control parameterλ. Data are shown forξ = 0 (•) and
ξ = 30 (◦).

1.5d. The cluster growth process did not change even if the definition was changed as long as
0.98d < rc < 1.55d.

After the system had reached a steady state, the cluster structures were investigated. The
ratio of the number of particles in the largest cluster to the total number of particles in the
system was calculated. The dependence of the ratio onλ is shown in figure 2. The ratio starts
increasing atλ ∼ 9 in the absence of a magnetic field(ξ = 0), whereas the corresponding
value isλ ∼ 7 in the magnetic field(ξ = 30).

The fractal dimension of the clusters in the system can be calculated from the relation
between the number of particles in a cluster and the cluster radius [1]. The fractal dimensions
in the absence of a magnetic field are shown in figures 3(a) and (b) for λ = 10 and 13. The
fractal dimensions in the presence of a magnetic field are shown in figures 3(c) and (d) for
λ = 8 and 13. The fractal dimensions are almost constant despite any changes in parameterλ

in both cases. The fractal dimensions are, respectively, 1.3 and 1.0 in the absence of a magnetic
field and in the magnetic field.

3.2. Cluster–cluster aggregations

The CCA mode was analysed from the time histories of the cluster size and the number of
clusters. The time variations of cluster aggregations are shown in figure 4. After the particle–
particle diffusion growth in the early stage, CCAs are observed. The clusters are curved in the
absence of a magnetic field, while straight clusters are formed in the magnetic field. Whenλ

is larger than the critical value, the size of the largest cluster formed in the system reaches the
system size (see also figure 2).

As was mentioned above, after the particle–particle diffusion growth, the clusters grow
through the CCAs. According to the dynamic scaling law [25], the number of clusters which
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Figure 3. Relation between the number of particles in a cluster and the cluster radius: (a) ξ = 0,
λ = 10; (b) ξ = 0, λ = 13; (c) ξ = 30,λ = 8; (d) ξ = 30,λ = 13. The slope gives the fractal
dimension. The fractal dimension is 1.3 in the absence of a magnetic field(ξ = 0) and 1.0 in the
magnetic field(ξ = 30).

are composed ofs particles,ns(t), is expressed by the following relation:

ns(t) ∼ t−ws−τ f (s/tz) (14)

wheret ands are, respectively, time and the number of particles in a cluster;f is a scaling
function andw, τ andz are the exponents which characterize the cluster growth process. If
the dynamic scaling relation (14) is correct, the second momentS(t) (the average number of
particles in a cluster), the mean radius of inertia of a cluster,R(t), and the zeroth moment,
N(t) (that is, the total number of clusters) change with time as follows [25,26]:

S(t) =
∑

s ns(t)s
2∑

s ns(t)s
∼ t z (15)

R(t) ∼ S(t) 1
D ∼ t zD (16)

N(t) =
∑
s

ns(t) ∼
{
t−z(τ < 1)

t−w(τ > 1)
(17)

whereD is the fractal dimension.
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Figure 4. Time variations of cluster aggregations:
(a) ξ = 0, λ = 13; (b) ξ = 30, λ = 13. After the
particle diffusion growth in the early stage, clusters
grow through CCAs. Clusters are curved in the
absence of a magnetic field(ξ = 0) and straight in
the magnetic field(ξ = 30).

The time variations ofS(t),R(t)andN(t)are shown in figure 5. The exponentz calculated
by equation (15) coincides with that calculated by equation (17), which means thatτ < 1 (see
equation (17)). The particle–particle aggregations and CCAs are determined by the diffusion-
limited process;S(t) increases with time asS(t) ∼ t z andN(t) decreases with time as
N(t) ∼ t−z. These relations are also confirmed by a phenomenological model [20] and an
experiment of paramagnetic colloidal system in a magnetic field [8]. We also carried out
simulations with a larger system of 900 particles per 0.960µm× 0.960µm and confirmed
that the values ofz were the same as those obtained in the original smaller system. Note that
the standard deviations of the exponentz was within 10% of the average values.

The fractal dimensions calculated by equation (16) using the exponentz obtained by
equations (15) and (17) are very close to those of clusters at the steady state. The fractal
structures during the CCAs are almost the same as those at the steady state. In our simulations,
the fractal dimension was 1.3 in the absence of a magnetic field for 86 λ 6 13. According
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Figure 5. Time variations of the average number of particles in a clusterS(t), the mean radius of
inertia of a clusterR(t) and the total number of clusters in the systemN(t): (a) ξ = 0, λ = 10;
(b) ξ = 0, λ = 13; (c) ξ = 30,λ = 8; (d) ξ = 30,λ = 13. S(t) andN(t) change with time as
S(t) ∼ tz andN(t) ∼ t−z. The fractal dimensions of clusters during CCA are almost the same as
those at the steady state.
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Figure 6. Dependence of exponentz on control parameterλ. Data are shown forξ = 0 (•) and
ξ = 30 (◦). z increases withλ and becomes constant whenλ > 12.

to statistical analysis carried out by Morimoto and Maekawa [27], the fractal dimension of
clusters in the absence of a magnetic field in a two-dimensional system is4

3 irrespective ofλ,
which agrees with our present result. Helgesenet al carried out two-dimensional experiments
and reportedD in the range from 1.49± 0.06 to 1.16± 0.15 for λ = 0–1360 [6]. If we
focus on the fractal dimension for 86 λ 6 13, D = 1.47–1.46. The fractal dimension
obtained by Helgesenet al is slightly higher than ours and is almost constant for 86 λ 6 13.
The SAW model and the tip-to-tip model [28] showedD = 4

3 and 1.28± 0.03, respectively,
in a two-dimensional case. These values are very close to our value, 1.3. Because of the
highly directional dipole–dipole interactions, clusters tend to be formed through tip-to-tip or
tail-to-end coagulations as in the case of the tip-to-tip model. According to the chain–chain
aggregation model [29],D = 1.32± 0.04 in a two-dimensional case. The value of the fractal
dimension is almost the same as ours. A cluster aggregation model in which dipole–dipole
interactions are taken into account was also developed by Helgesenet al for λ→∞ [6]. The
fractal dimension was 1.23± 0.12.

The dependence of the exponentz on parameterλ is shown in figure 6. The exponent
increases withλ and becomes constant whenλ > 12 although the fractal dimension is constant
despite any changes toλ. The exponent in the magnetic field is larger than that in the absence
of a magnetic field. A similar dependence of the exponentz on the nondimensional parameter
λ is obtained by experiment [6]. CCA processes in the absence of a magnetic field were
observed by Helgesenet al [6] in a two-dimensional system. Althoughz increased withλ,
which agrees with our result,z was 1.7±0.2 forλ = 1360. The value ofz is much larger than
ours. We assume that in their experiment, the three-dimensional motion of magnetic moment
encouraged the aggregations. Note that the diameter of the magnetic particle was 3.6µm
and the depth of the liquid layer was 5µm in their experiment. According to Morimoto
and Maekawa [30], the exponent in a three-dimensional system is larger than that in a two-
dimensional system. Promislowet al [7] reported thatz decreases withλ, mentioning that
chain clusters are elastically bent whenλ is small. However, such flexible chain clusters were
not observed in our simulations. The chain–chain aggregation model givesz = 0.72±0.02 in
a two-dimensional case [29], which agrees with ourz for λ > 12. Hagenb̈uchle and Liu [12]
measured the time history of cluster length in a magnetic field by the dynamic scattering
method and obtainedz/D = 0.78 for 22.5 < λ < 263, which agrees with our simulation
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result; z/D = 0.77 for λ = 12 andξ = 30. Although Hagenb̈uchle and Liu’s result was
obtained in a three-dimensional system, the value ofz/D in a three-dimensional system is the
same as that in a two-dimensional system when the intensity of magnetic field is high [30].
Miyazimaet al [20] investigated CCAs by a phenomenological model and mean field theory
in which particles were allowed to aggregate only in one direction, which is very similar to
cluster aggregations in a magnetic field. They reported that mean field theory applied to the
coagulation process when the system dimensiond was 2 and 3 and therefore the exponentz

for d = 3 was the same as that ford = 2.
According to our simulations, the rate of the dissociations of clusters is almost the same as

that of the aggregations of clusters whenλ is small. In other words, the cluster growth process
is reversible, which explains whyz is small whenλ is small. Whenλ is large, however, the
interparticle potential becomes strong and therefore clusters cannot dissociate. The cluster
growth process changes from reversible to irreversible mode asλ increases. This process
change corresponds to the saturation point ofz.

4. Conclusions

We studied cluster structures and CCAs in a two-dimensional ferromagnetic colloidal system
numerically. We developed a Brownian dynamics method in which both the translational and
rotational motions of particles were taken into account. The calculations were successfully
carried out. The fractal dimensions were, respectively, 1.3 and 1.0 in the absence of a magnetic
field and in the magnetic field, irrespective ofλ. CCAs were also investigated. We found that
the dynamic scaling relation expressed by equation (14) applies to the CCA of ferromagnetic
particles and, as a result, the power laws expressed by equations (15)–(17) apply to the time
variations of the average number of particles, the mean radius of inertia of a cluster and the
total number of clusters. The fractal dimensions of clusters during the CCA process coincided
with those at the steady state. Although the fractal dimension was constant despite any changes
to λ, the exponentz increased withλ and became constant whenλ > 12.
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Appendix A. Procedure of numerical integration

We integrated the Langevin equations numerically. The integration procedures are as follows:

(1) Integration of the Langevin equation of the translational motion;

u(t +1t) = e−βt1tu(t) +
F (t)

mβt
(1− e−βt1t ) + Ψu (A.1)

r(t +1t) = r(t) +
1

βt

1− e−βt1t

1 + e−βt1t

{
u(t +1t) + u(t)− 2

F (t)

mβt

}
+
F (t)

mβt
1t + Ψr (A.2)

whereβt = ζt/m andΨu andΨr are the normalized random vectors which satisfy the
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following relations:

〈Ψu〉 = 〈Ψr〉 = 0

〈Ψu ·Ψr〉 = 0

〈|Ψu|2〉 = 3kT

m
{1− e−2βt1t }

〈|Ψr |2〉 = 6kT

mβ2
t

{
βt1t − 2

1− e−βt1t

1 + e−βt1t

}
.

(A.3)

(2) Integration of the Langevin equation of the rotational motion;

ω(t +1t) = e−βr1tω(t) +
T (t)

Iβr
(1− e−βr1t ) + Ψω (A.4)

1Ω = 1

βr

1− e−βr1t

1 + e−βr1t

{
ω(t +1t) +ω(t)− 2

T (t)

Iβr

}
+
T (t)

Iβr
1t + Ψ1� (A.5)

whereβr = ζr/I and Ψω andΨ1� are the normalized random vectors which satisfy the
following relations:

〈Ψω〉 = 〈Ψ1�〉 = 0

〈Ψω ·Ψ1�〉 = 0

〈|Ψω|2〉 = 3kT

I
{1− e−2βr1t }

〈|Ψ1�|2〉 = 6kT

Iβ2
r

{
βr1t − 2

1− e−βr1t

1 + e−βr1t

}
.

(A.6)

The magnetic dipole moment vectorm is calculated by the following equation:

m(t +1t) =m(t) cos1φ +n(n ·m(t))(1− cos1φ) + (n×m(t)) sin1φ (A.7)

where1φ = |1Ω| andn = 1Ω/1φ.
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